The Intended and Unintended Consequences of Financial-Market Regulations

 A. Buss
 B. Dumas
 R. Uppal
 G. Vilkov

 INSEAD
 INSEAD, CEPR, NBER
 Edhec, CEPR
 Frankfurt School

European Institute of Financial Regulation (EIFR) and Institut Louis Bachelier (ILB)

1 June 2017

Paris

Motivation

- The recent financial crisis, has highlighted the negative feedback from financial markets to the real sector.
- Debate about ability of financial-market regulations to
 - stabilize financial markets, and
 - improve macroeconomic outcomes.

Objective

- Study the intended and unintended consequences of three regulatory measures which have been proposed by regulators:
 - 1 Financial-transactions tax
 - 0.20% tax, by France in 2012
 - 2 Portfolio constraints (short-sale constraints)
 - Spain and Italy, 2012, and
 - **3** Borrowing constraints (leverage constraints)
 - advocated in 2008 by European commissioner.

Questions we wish to answer

- Of the three regulatory measures, which is most effective in stabilizing financial markets and increasing welfare?
- ▶ What is the channel through which each measure works?
- What is the impact, intended or unintended on
 - financial variables: the risk-free interest rate, the cost of capital?
 - what are the spillover effects on real variables?
- Are more tightly regulated markets
 - more stable?
 - increase output growth or welfare?

Setting

Consider a world where financial markets influence real sector.

Investors trade for two reasons:

1 Risk-sharing: hedge shocks to labor income

2 Speculation: disagree about the state of the economy

► Trading in financial markets has positive and negative effects

- Trading to share risk improves welfare
- Trading to speculate generate excess volatility in financial and real markets, and reduces welfare.

Preview of results: Effects on financial and macro variables

- All three regulatory measures have similar effects on financial and macroeconomic variables:
 - reduce stock and bond turnovers,
 - reduce the risk-free rate
 - increase the equity risk premium and stock-return volatility,
 - change capital investment and output growth.

Preview of results: Effects on welfare

Effect on welfare depends on how regulatory policy influences

- Speculative trading—financed using the bond
- Risk-sharing—executed through trading stocks

1 Borrowing constraint improves welfare

- because bond used mostly to finance speculative trading
- 2 Small transaction tax improves welfare
 - because it allows for small trades to hedge labor income but makes large and erratic speculative trades less profitable.
- 3 Limit on stock holdings, such as short-sale ban, reduces welfare
 - because it limits risk sharing severely, while reducing only partially speculative trading.

Outline

Motivation and objective

2 The model

- **3** Effects of disagreement
- **4** Benefits of risk sharing
- **5** Effects of regulatory measures
- 6 Conclusion

Key features of our model

- Endogenous growth: by means of an "AK"-production model differences in beliefs and regulation can affect long-run growth
- Differences in beliefs with persistent disagreement: differences in learning—effects do not 'die out'
- Risk resides internally in the financial system: speculators gives rise to motive for financial regulation
- Market incompleteness:

because of differences in beliefs, labor-income shocks, regulation

Production

- Representative firm producing and paying out a single consumption good.
- Stochastic technology (productivity shocks, "AK" model)
- Quadratic adjustment costs to change capital stock
- Firm chooses investment and dividends to maximize its value, which depends on ownership-weighted state prices of investors.

Investors

- ▶ Two groups of investors that derive utility from consumption
 - Utility function is of the Epstein-Zin-Weil type.
- ► Investors receive stochastic wages by supplying labor.
- Investors can invest in two financial assets:
 - stock, which represents a claim to the dividends of the firm;
 - one-period risk-free bond.

- ► Hidden Markov Model for describing uncertainty in the economy.
- Hidden Part
 - Two unobservable fundamental states: 'Expansion' or 'Recession'
 - Markov process describes transition between these states.

Disagreement between investors

Observables

- While state of economy is unobservable, investors do observe
 - 1 productivity realization: 'high' or 'low'
 - **2** a public signal: 'positive' or 'negative'
- Investors use these observables to form conditional state probabilities using a nonlinear analog of the Kalman filter.
- Investors disagree about the information contained in the signal, so they agree to disagree.
- Results in persistent stochastic disagreement between investors.

Regulatory measures

- 1 Portfolio constraint puts lower limit on investors' stock holdings
 - Short-sale constraint implies a lower limit of zero.
- **2** Borrowing constraint limits the maximum amount of borrowing
- Transaction tax: proportional transaction tax on value of stock traded
 - Tax is redistributed back as a lump-sum to investors after they have made their optimization decisions for thate date.

Equilibrium in this economy is defined as

- consumption policies that maximize lifetime expected utility
- portfolio policies that finance the optimal portfolio policy
- investment policy that maximizes the value of the firm
- price processes for the financial assets such that markets clear.
- regulatory constraint is satisfied.

Solving for equilibrium

We solve for the equilibrium in the economy

- by extending the algorithm in Dumas and Lyasoff (2012),
- who show how one can identify the equilibrium
 - in a recursive fashion (for a frictionless exchange economy)
 - even with incomplete financial markets.

Calibration of the model

- For the quantitative analysis we calibrate our model to match several stylized facts of the U.S. macroeconomy and financial markets.
 - For example, output and investment volatility as well as the levered equity risk premium and its volatility.
- ▶ We solve model for 200 years, and study results for last 50 years in order to draw from a stationary distribution.
- ► All statistics are based on averages over 25,000 simulated paths.

Model parameters

Variable	Description	Value
Production		
Capital share in output	α	0.50
Avg. productivity	Ī	0.325
Avg. productivity growth	$ar{u}=-ar{d}$	0.041
Mean-reversion productivity growth	ν	0.667
Depreciation	δ	0.045
Adjustment costs	ξ	7.25
Investors		
Rate of time preference	β	0.96
Risk aversion	γ	8.50
Elasticity of intertemporal substitution	$\stackrel{\prime}{\psi}$	$1/\gamma$
Degree of disagreement	Ψ W	0.60
Persistence labor shocks	$E_{1,1} = E_{2,2}$	0.75
High individual labor supply	$e_{1,u} = e_{2,u}$ $e_{1,u} = e_{2,u}$	0.77
Low individual labor supply	$e_{1,d} = e_{2,d}$ $e_{1,d} = e_{2,d}$	0.23
	$c_{1,d} = c_{2,d}$	0.25
Uncertainty: Hidden Markov model		
Persistence of hidden states	$A_{1,1} = A_{2,2}$	0.90
Precision of productivity shocks	р	0.80
Initial probability hidden state 1	π	0.50

Financial and Business Cycle Statistics

Description	Variable	U.S. Data	Model
Financial markets			
Interest rate	r _f	1.94%	2.31%
Interest rate volatility	$\sigma(r_f)$	5.44%	4.89%
Levered equity premium	$\mathbb{E}[R^{ep}]$	6.17%	6.97%
Levered stock return volatility	$\sigma(R)$	19.30%	17.19%
Log price-dividend ratio	$\log(S/D)$	3.10	3.06
Volatility price-dividend ratio	$\sigma(\log(S/D))$	26.30%	19.60%
Real economy			
Output growth	E[Y]	1.60%	0.91%
Output growth volatility	$\sigma(Y)$	3.78%	3.93%
Norm. investment growth volatility	$\sigma(I)/\sigma(Y)$	2.39	2.04
Norm. consumption growth volatility	$\sigma(C)/\sigma(Y)$	0.40	0.71

Outline

Motivation and objective

2 The model

3 Effects of disagreement

4 Benefits of risk sharing

5 Effects of regulatory measures

6 Conclusion

Effects of disagreement

- Disagreement is stochastic, with stochastic volatility.
- Thus, disagreement is an additional source of risk.
 Often referred to as "sentiment risk."
- ▶ This extra risk affects both the financial and real sectors.

Effects of disagreement on financial sector

- ► Increased demand for precautionary saving, reduces interest rate.
- Interest rate volatility and stock return volatility increase.
- Per annum turnover increases
 - for the bond by 15 times; for the stock by 5 times
 - thus, bond important to finance speculation (no change in labor income, so need bond to fund speculation)
- Equity risk premium increases.
- Cost of capital increases.

Higher cost of capital leads to:

- Lower rate of investment
- Lower growth rate
- Higher volatility of investment growth
- ▶ Welfare is reduced by about 4% of initial capital.

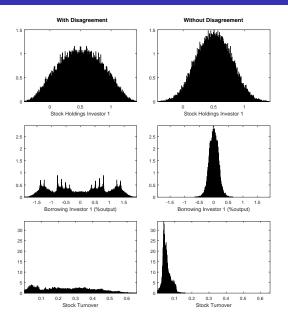
Effects of disagreement

Disagreement

Description	Variable	Yes	No
Financial markets			
Interest rate	r _f	2.31%	3.36%
Interest rate volatility	$\sigma(r_f)$	4.89%	2.30%
Levered equity premium	$\mathbb{E}[R^{ep}]$	6.97%	4.50%
Levered stock return volatility	$\sigma(R)$	17.19%	13.29%
Log price-dividend ratio	$\log(S/D)$	3.06	3.11
Volatility price-dividend ratio	$\sigma(\log(S/D))$	19.60%	13.40%
Real economy			
Output growth	E[Y]	0.91%	1.08%
Output growth volatility	$\sigma(Y)$	3.93%	3.94%
Norm. investment growth volatility	$\sigma(I)/\sigma(Y)$	2.04	1.46
Norm. consumption growth volatility	$\sigma(C)/\sigma(Y)$	0.71	0.87
Turnover			
Bond market		0.203	0.013
Stock market		0.139	0.027
Welfare (certainty consumption)			
Econometrician's measure		0.1238	0.1289

Outline

- Motivation and objective
- 2 The model
- **3** Effects of disagreement
- 4 Benefits of risk sharing
- **5** Effects of regulatory measures
- 6 Conclusion


Benefits of risk sharing

- To study importance of risk-sharing, we compare two economies, both with labor-income risk but without disagreement:
 - 1 first with bonds and stocks
 - 2 second without bonds and/or stock

Benefits of risk sharing: Stock vs. Bonds

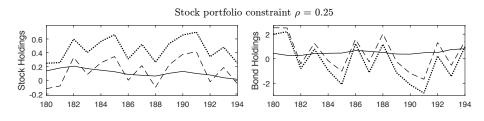
- a. If bond & stock unavailable for trading, then large welfare loss
 - Investors can hedge only by changing investment in the firm
- b. If only stock unavailable for trading, then smaller welfare loss
- c. If only bond unavailable for trading, then even smaller loss
 - 1/10th the loss from not being able to trade stock.
- Thus, stock market much more important for risk sharing. (the next figure illustrates this point)

Histograms: Effective channels for regulation

Outline

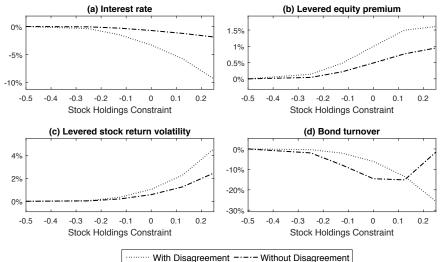
- Motivation and objective
- 2 The model
- **3** Effects of disagreement
- Ø Benefits of risk sharing
- **5** Effects of regulatory measures
- 6 Conclusion

Effects of regulatory measures

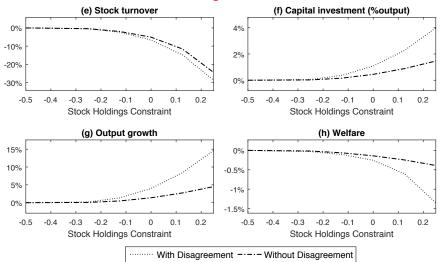

▶ We now look at the effects of the three regulatory measures:

- 1 Portfolio constraint
- 2 Borrowing constraint
- 8 Financial-transaction tax

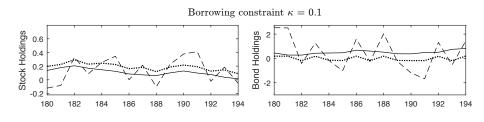
- Results explained using two kinds of pictures:
 - Plot of individual paths
 - Plot of changes (averaged across 25,000 paths) as we change magnitude of regulatory measure


1. Portfolio constraint

Portfolio constraint: One simulated path

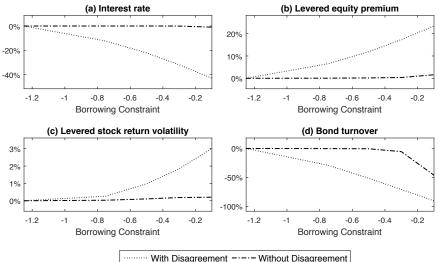

Effects of portfolio constraint on financial sector

Change in ...

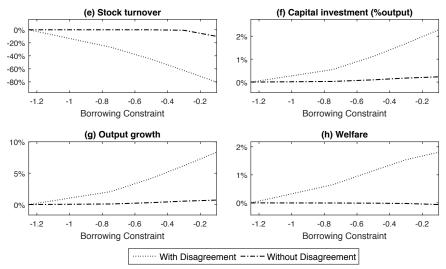

Effects of portfolio constraint on welfare

Change in ...

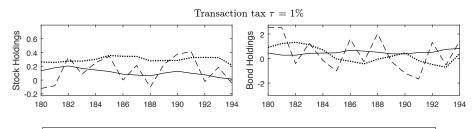
2. Borrowing constraint


Borrowing constraint: One simulated path

---- Without disagreement ---- With disagreement With disagreement and regulation

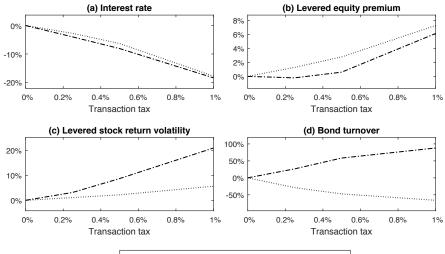

Effects of portfolio constraint on financial sector

Change in ...


Effects of portfolio constraint on welfare

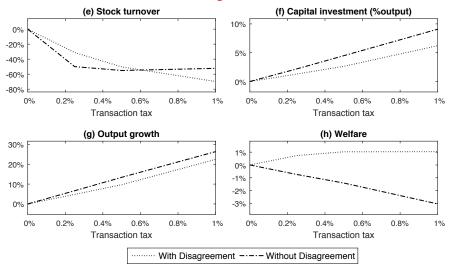
Change in ...

3. Financial-transaction tax


Financial-transaction tax: One simulated path

---- Without disagreement ---- With disagreement With disagreement and regulation

Effects of portfolio constraint on financial sector


Change in ...

...... With Disagreement ---- Without Disagreement

Effects of portfolio constraint on welfare

Change in ...

Outline

- Motivation and objective
- 2 The model
- **3** Effects of disagreement
- Ø Benefits of risk sharing
- **5** Effects of regulatory measures
- 6 Conclusion

Conclusion

► Study model where financial markets have real effects

- Financial markets allow for risk sharing, which increases welfare
- Financial markets allow for speculation, which reduces welfare

Quantitatively assess the effectiveness of regulatory measures:

- 1. Portfolio (short-sale) constraint: Negative
- 2. Financial-transaction tax:
- 3. Borrowing constraint:

Positive but small Positive and larger

 Intuition: welfare improves only if regulatory measure reduces speculation without impairing substantially risk-sharing. Thank you